SVM-RFE Based Feature Selection and Taguchi Parameters Optimization for Multiclass SVM Classifier

نویسندگان

  • Mei-Ling Huang
  • Yung-Hsiang Hung
  • W. M. Lee
  • R. K. Li
  • Bo-Ru Jiang
چکیده

Recently, support vector machine (SVM) has excellent performance on classification and prediction and is widely used on disease diagnosis or medical assistance. However, SVM only functions well on two-group classification problems. This study combines feature selection and SVM recursive feature elimination (SVM-RFE) to investigate the classification accuracy of multiclass problems for Dermatology and Zoo databases. Dermatology dataset contains 33 feature variables, 1 class variable, and 366 testing instances; and the Zoo dataset contains 16 feature variables, 1 class variable, and 101 testing instances. The feature variables in the two datasets were sorted in descending order by explanatory power, and different feature sets were selected by SVM-RFE to explore classification accuracy. Meanwhile, Taguchi method was jointly combined with SVM classifier in order to optimize parameters C and γ to increase classification accuracy for multiclass classification. The experimental results show that the classification accuracy can be more than 95% after SVM-RFE feature selection and Taguchi parameter optimization for Dermatology and Zoo databases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiclass SVM-RFE for product form feature selection

Various form features affect consumer preference regarding product design. It is, therefore, important that designers identify these critical form features to aid them in developing appealing products. However, the problems inherent in choosing product form features have not yet been intensively investigated. In this paper, an approach based on multiclass support vector machine recursive featur...

متن کامل

MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data

MOTIVATION Given the thousands of genes and the small number of samples, gene selection has emerged as an important research problem in microarray data analysis. Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of a group of recently described algorithms which represent the stat-of-the-art for gene selection. Just like SVM itself, SVM-RFE was originally designed to solve bi...

متن کامل

The Construction of Support Vector Machine Classifier Using the Firefly Algorithm

The setting of parameters in the support vector machines (SVMs) is very important with regard to its accuracy and efficiency. In this paper, we employ the firefly algorithm to train all parameters of the SVM simultaneously, including the penalty parameter, smoothness parameter, and Lagrangian multiplier. The proposed method is called the firefly-based SVM (firefly-SVM). This tool is not conside...

متن کامل

An Efficient Alternative to SVM Based Recursive Feature Elimination with Applications in Natural Language Processing and Bioinformatics

The SVM based Recursive Feature Elimination (RFE-SVM) algorithm is a popular technique for feature selection, used in natural language processing and bioinformatics. Recently it was demonstrated that a small regularisation constant C can considerably improve the performance of RFE-SVM on microarray datasets. In this paper we show that further improvements are possible if the explicitly computab...

متن کامل

Comparison of variable selection methods and classifiers for native accent identification

Acoustic differences are so subtle in a native accent identification (AID) task that a brute force frame-based Gaussian Mixture Model (GMM) fails to discover the tiny distinctions [1]. Apart from the frame-based framework, in this paper we propose a vector-based speaker modeling method, to which common support vector machine (SVM) kernels can be applied. The vector-based speaker model is compos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014